Extensions 1→N→G→Q→1 with N=C32 and Q=C4×D5

Direct product G=N×Q with N=C32 and Q=C4×D5
dρLabelID
D5×C3×C12180D5xC3xC12360,91

Semidirect products G=N:Q with N=C32 and Q=C4×D5
extensionφ:Q→Aut NdρLabelID
C321(C4×D5) = D5×C32⋊C4φ: C4×D5/D5C4 ⊆ Aut C32308+C3^2:1(C4xD5)360,130
C322(C4×D5) = Dic3×D15φ: C4×D5/C10C22 ⊆ Aut C321204-C3^2:2(C4xD5)360,77
C323(C4×D5) = C6.D30φ: C4×D5/C10C22 ⊆ Aut C32604+C3^2:3(C4xD5)360,79
C324(C4×D5) = D30.S3φ: C4×D5/C10C22 ⊆ Aut C321204C3^2:4(C4xD5)360,84
C325(C4×D5) = C3×D30.C2φ: C4×D5/Dic5C2 ⊆ Aut C321204C3^2:5(C4xD5)360,60
C326(C4×D5) = C30.D6φ: C4×D5/Dic5C2 ⊆ Aut C32180C3^2:6(C4xD5)360,67
C327(C4×D5) = C12×D15φ: C4×D5/C20C2 ⊆ Aut C321202C3^2:7(C4xD5)360,101
C328(C4×D5) = C4×C3⋊D15φ: C4×D5/C20C2 ⊆ Aut C32180C3^2:8(C4xD5)360,111
C329(C4×D5) = C3×D5×Dic3φ: C4×D5/D10C2 ⊆ Aut C32604C3^2:9(C4xD5)360,58
C3210(C4×D5) = D5×C3⋊Dic3φ: C4×D5/D10C2 ⊆ Aut C32180C3^2:10(C4xD5)360,65


׿
×
𝔽